Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5LFZ_1)}(2) \setminus P_{f(4PEG_1)}(2)|=58\),
\(|P_{f(4PEG_1)}(2) \setminus P_{f(5LFZ_1)}(2)|=127\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0000001101011101111001000011101001110000011001000001101111100100010010011001001100010000100101011000101000110011110101101101101110001110111110100101000010001011100101101111001000010111011001001100110100111100101101000010001
Pair
\(Z_2\)
Length of longest common subsequence
5LFZ_1,4PEG_1
185
6
5LFZ_1,4PNJ_1
134
3
4PEG_1,4PNJ_1
191
3
Newick tree
[
4PEG_1:10.42,
[
5LFZ_1:67,4PNJ_1:67
]:34.42
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{583
}{\log_{20}
583}-\frac{223}{\log_{20}223})=102.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5LFZ_1
4PEG_1
135
106.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]