Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5LED_1)}(2) \setminus P_{f(4JRI_1)}(2)|=88\),
\(|P_{f(4JRI_1)}(2) \setminus P_{f(5LED_1)}(2)|=38\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10100000001001100110110110000101111011010010001101101111010111101110011010100001001101110010101101110011110100111011101111110101101110011111100011001001100010011001100100010001101101100001001101110100100011011011110101111011100110101000010011011100101011011100111101001110111011111101011011100111111000110010011000100110011001000100011011011000010011011101001000110110111101011110111001101010000100110111001010110111001111010011101110111111010110111001101010001100110111001000110110011
Pair
\(Z_2\)
Length of longest common subsequence
5LED_1,4JRI_1
126
4
5LED_1,6HHU_1
146
6
4JRI_1,6HHU_1
164
3
Newick tree
[
6HHU_1:81.92,
[
5LED_1:63,4JRI_1:63
]:18.92
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{553
}{\log_{20}
553}-\frac{68}{\log_{20}68})=145.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5LED_1
4JRI_1
71
49
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]