Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5LBT_1)}(2) \setminus P_{f(5CSX_1)}(2)|=72\),
\(|P_{f(5CSX_1)}(2) \setminus P_{f(5LBT_1)}(2)|=89\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111001111010001001010100111001000100101001011010101000010101001011001100001000001100100000010010111101110110111110111001100111101111000111010111101001101010000110100001111100101010110111101011101100000011111100010011000111001010110000000
Pair
\(Z_2\)
Length of longest common subsequence
5LBT_1,5CSX_1
161
3
5LBT_1,8HMO_1
160
6
5CSX_1,8HMO_1
175
4
Newick tree
[
5CSX_1:85.38,
[
5LBT_1:80,8HMO_1:80
]:5.38
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{519
}{\log_{20}
519}-\frac{237}{\log_{20}237})=80.8\)
Status
Protein1
Protein2
d
d1/2
Query variables
5LBT_1
5CSX_1
102
93.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]