Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5KXA_1)}(2) \setminus P_{f(3OIR_1)}(2)|=236\),
\(|P_{f(3OIR_1)}(2) \setminus P_{f(5KXA_1)}(2)|=10\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000010000110110111110101110100100101100111011000110110100010010100111100000010000000000100101001011000000010100000100000001101000000011001000110000001011001111101111110101101001001001110100100010001010110100011010011011010001111001001110101010100010001111011110100011011011101111000011011011011000010101100001010100011111010011001001110110110010100010111110011001000000110001001001011110110100010001000101111110000100010101000110010010000100101110001011001101000101001101001100010010011110100100000111100101001100111101110010010100110000101011001001001111010001011000000101000100100010001000000110101111000000110000100100011111110000100010100110010001010101010100001100000010011111101000101000111100111101110011001001110001000011011011110000011000000100010100111100000110001010011000011101001111001000000000000001100110100101001001001011000000010110100010000001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{998
}{\log_{20}
998}-\frac{135}{\log_{20}135})=238.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5KXA_1
3OIR_1
309
177
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]