Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5KWH_1)}(2) \setminus P_{f(7WMJ_1)}(2)|=93\),
\(|P_{f(7WMJ_1)}(2) \setminus P_{f(5KWH_1)}(2)|=80\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101111001010001000010001000001101100000011001101000011011010000011101101100001000101100101110110110110011000111110010000100100010000101010011011000001111000101001110000001011011110100110000101100010110111000100001011011011101110001110100000011011011100010001000010101010011100000010011000000110101101100110000000101001100101001100010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{593
}{\log_{20}
593}-\frac{260}{\log_{20}260})=93.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
5KWH_1
7WMJ_1
119
105.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]