Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5KPR_1)}(2) \setminus P_{f(7ZRU_1)}(2)|=196\),
\(|P_{f(7ZRU_1)}(2) \setminus P_{f(5KPR_1)}(2)|=14\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000000011110101111101110110100101101010000001001001000100011010011001010100101110010101101100011011011000010010011010111100100010011010100100100110111010010101010000110100100000111010010111110110110111100000000101001111011110011010001001101100100001001100101100001111111110011011000000010000110101101000110110101100010011111011010010101110110010010101111000101111111111101000
Pair
\(Z_2\)
Length of longest common subsequence
5KPR_1,7ZRU_1
210
3
5KPR_1,3MMJ_1
176
3
7ZRU_1,3MMJ_1
200
3
Newick tree
[
7ZRU_1:10.93,
[
5KPR_1:88,3MMJ_1:88
]:18.93
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{408
}{\log_{20}
408}-\frac{28}{\log_{20}28})=121.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5KPR_1
7ZRU_1
155
82.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]