Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5KFQ_1)}(2) \setminus P_{f(3QAG_1)}(2)|=128\),
\(|P_{f(3QAG_1)}(2) \setminus P_{f(5KFQ_1)}(2)|=61\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110110100011111010011101000001010001011100001011111110001011110001110010010101111010000101010000010101101100111100101001010100110001001010110101110001011101100100010001100011101100101001001010101111110010111000011000111000011101101100100001100101101100111001001110111011011110011010010000100011000101101100110001101001100110000111001110000101111011001000100000000011001110101010001001000011000010010001101100000011000101110111101001010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{674
}{\log_{20}
674}-\frac{239}{\log_{20}239})=121.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5KFQ_1
3QAG_1
154
119.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]