Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5KEN_1)}(2) \setminus P_{f(8SSS_1)}(2)|=119\),
\(|P_{f(8SSS_1)}(2) \setminus P_{f(5KEN_1)}(2)|=75\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111111000010100100110000100000100111010101110011010001110011110110001101100000101001010001111101101110000100101011011011100011111000110011001001101111111110100011000110011010001001000001000101110000001101001001010001010111010001000100000010111010101000110111100000100010000101
Pair
\(Z_2\)
Length of longest common subsequence
5KEN_1,8SSS_1
194
3
5KEN_1,7BTL_1
164
4
8SSS_1,7BTL_1
164
3
Newick tree
[
8SSS_1:92.27,
[
5KEN_1:82,7BTL_1:82
]:10.27
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{479
}{\log_{20}
479}-\frac{203}{\log_{20}203})=80.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
5KEN_1
8SSS_1
103
89.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]