Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5KCR_1)}(2) \setminus P_{f(4FZL_1)}(2)|=13\),
\(|P_{f(4FZL_1)}(2) \setminus P_{f(5KCR_1)}(2)|=160\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110011101100111010101011011101000011011001111101101111110101001100010110111010011011110110101110010010110011011000001110111111100011010100001101010010010011001110001011100110111101110011111110011110100011101000011111111111100110011110000000110110110111011101111110110001111000111001101010101001101111101000111111101010110101111011011000010101011111010101010010111000110111011110111101010110100001000111010111111100100000011110011101000001100110011011011100110100101111111111011111111000011011111111011111111100011110010101010101110110111110101000111010101100101010000001010110111001101100010100001011011110011001110111111100111111111001110000110011101001110010111101011100011110001101100011001011101110011111001110110100110011111100111001100110100111111001101110110001011001111101111110011001110011111101100110000000011111001000111011010000101110001000001111101111010010000110111111100100001100010011000110101110010111010011111101001001011111101010110111010011010001001011111111111011000111001001100111100001111001011001110111111011010111111100011101100111101001100011111011001001000111111110101101100010011001110011000101011111101011011110011100101010011110010110110110100010101001001110111111101000010111000101111101010010111101010011111010011111010111010011010111011011011110111011111100010001001111110011111000001000110100110011110111101110011000001111011110011111101011001101111110111001101000001010001101001001011111111110111111110010100110011101101100100001100011101010111001100000011101110001111110011110011110101101101111010010110100111101101110100001000001111111100000111010011101101001110010100001110011010111011001110111111010011110100011111110001110111111100111011110110100101100001111111110101001101010111011110000001011101111001111001100111110100110011001011001000100111110101101001010111010111110111010101011010110100010001101001111110011001101111001101011101111000001100111100001101110110110010110010110110000111101101111000000100111011100001100010101110110101101101100111001000001000111100011011110011100010010111110101101010001011011110111111100001011100000100101100011010011101001110000110101011110111011111100001111010111010011000101011110011000011110100100000011010001101000011010011000101100011100101110110100011011101100011001111011000000000111111011011111110101111100110011000011001110100111111001101011011010111001100011001011101011011010111011101011111011100101101100011011000011101111111001001000110111011111101000011111011011100110100100011111000101001101101101000110100001101001100010010100001111001111011100001111101011001000100100011110110101011100111000111101001011110110001100000100010010111010011111100111111110010000011010111111100111101110101001001101000111001001010011011010010001101100111010111111110111010011111010001110101111000100001111011100000000110000001111100001111111010011111011011010011011100111010101110101101101010011100110011010011011100101111000110000
Pair
\(Z_2\)
Length of longest common subsequence
5KCR_1,4FZL_1
173
3
5KCR_1,7BVX_1
163
4
4FZL_1,7BVX_1
146
8
Newick tree
[
5KCR_1:87.40,
[
7BVX_1:73,4FZL_1:73
]:14.40
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{3151
}{\log_{20}
3151}-\frac{247}{\log_{20}247})=705.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5KCR_1
4FZL_1
485
297
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]