Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5JYA_1)}(2) \setminus P_{f(2HSZ_1)}(2)|=95\),
\(|P_{f(2HSZ_1)}(2) \setminus P_{f(5JYA_1)}(2)|=58\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000000011110100111011101110110111001001011010010010010111011000000101010101001110101011010100011010110011011101011110000100010001100111011110010011100000110100011011000000111110110001110011100101001001110110011010010111101110001110111111101010101110011110101001110100010100101110111000010000111000111100101101000010010100110110100001000001100100110110
Pair
\(Z_2\)
Length of longest common subsequence
5JYA_1,2HSZ_1
153
6
5JYA_1,3EVU_1
140
7
2HSZ_1,3EVU_1
169
6
Newick tree
[
2HSZ_1:83.83,
[
5JYA_1:70,3EVU_1:70
]:13.83
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{599
}{\log_{20}
599}-\frac{243}{\log_{20}243})=100.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5JYA_1
2HSZ_1
124
104
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]