Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5JRI_1)}(2) \setminus P_{f(2AVW_1)}(2)|=86\),
\(|P_{f(2AVW_1)}(2) \setminus P_{f(5JRI_1)}(2)|=73\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100110100001010100100111111111110111011001100111001010011100100011101001100110000001101110110101001000100111010110000101110000111101110011010010010001100101011001101100011111100101011111011010101100110011001010110010110011100111000010110110101101001110110100000101101101010011000110000101111101001100101111010111001100100100100110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{641
}{\log_{20}
641}-\frac{311}{\log_{20}311})=91.6\)
Status
Protein1
Protein2
d
d1/2
Query variables
5JRI_1
2AVW_1
121
115.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]