Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5JPN_1)}(2) \setminus P_{f(8VVO_1)}(2)|=147\),
\(|P_{f(8VVO_1)}(2) \setminus P_{f(5JPN_1)}(2)|=34\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:01011110101101111101110100110101101011100100001100101010100000111101011100100011001101101011100111000100000101101110000101110000110011001000111100010100001011100001101000010110011000111101001101010101001100000001010001110101010110101101110100101010100101011011101011110001000110110000011010001010010100110010111001011010111111001110100101001011001101010000001111111110111001010110111101010100110110100100000101010111111001001010101101011110101111101111110100100011011001010101110110100000111001011110001000100101110001110101111000100111001010101110010101010110000010010101000011111111100110111000001101101101100001101111100110110111111001001010000100100000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{880
}{\log_{20}
880}-\frac{224}{\log_{20}224})=180.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5JPN_1
8VVO_1
226
150
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]