CoV2D BrowserTM

CoV2D project home | Random page
Parikh vectors
5JAR_1 8VAZ_1 5PRE_1 Letter Amino acid
28 73 5 I Isoleucine
38 123 18 L Leucine
12 71 10 V Valine
16 35 8 Q Glutamine
28 60 7 G Glycine
17 52 13 E Glutamic acid
25 54 6 K Lycine
22 61 6 F Phenylalanine
13 33 5 Y Tyrosine
26 68 11 A Alanine
28 62 13 D Aspartic acid
20 56 5 T Threonine
18 59 4 N Asparagine
15 42 6 P Proline
18 22 10 H Histidine
9 30 7 M Methionine
25 76 7 S Serine
7 17 0 W Tryptophan
18 42 14 R Arginine
5 29 1 C Cysteine

5JAR_1|Chain A|Platelet-activating factor acetylhydrolase|Homo sapiens (9606)
>8VAZ_1|Chains A, B, C, D|Calcium-activated potassium channel subunit alpha-1|Homo sapiens (9606)
>5PRE_1|Chains A, B|Bromodomain-containing protein 1|Homo sapiens (9606)
Protein code \(c\) LZ-complexity \(\mathrm{LZ}(w)\) Length \(n=|w|\) \(\frac{\mathrm{LZ}(w)}{n /\log_{20} n}\) \(p_w(1)\) \(p_w(2)\) \(p_w(3)\) Sequence \(w=f(c)\)
5JAR , Knot 166 388 0.85 40 234 373
MAAASFGQTKIPRGNGPYSVGCTDLMFDHTNKGTFLRLYYPSQDNDRLDTLWIPNKEYFWGLSKFLGTHWLMGNILRLLFGSMTTPANWNSPLRPGEKYPLVVFSHGLGAFRTLYSAIGIDLASHGFIVAAVEHRDRSASATYYFKDQSAAEIGDKSWLYLRTLKQEEETHIRNEQVRQRAKECSQALSLILDIDHGKPVKNALDLKFDMEQLKDSIDREKIAVIGHSFGGATVIQTLSEDQRFRCGIALDAWMFPLGDEVYSRIPQPLFFINSEYFQYPANIIKMKKCYSPDKERKMITIRGSVHQNFADFTFATGKIIGHMLKLKGDIDSNVAIDLSNKASLAFLQKHLGLHKDFDQWDCLIEGDDENLIPGTNINTTNQHHHHHH
8VAZ , Knot 394 1065 0.86 40 340 962
MDALIIPVTMEVPCDSRGQRMWWAFLASSMVTFFGGLFIILLWRTLKYLWTVCCHCGGKTKEAQKINNGSSQADGTLKPVDEKEEAVAAEVGWMTSVKDWAGVMISAQTLTGRVLVVLVFALSIGALVIYFIDSSNPIESCQNFYKDFTLQIDMAFNVFFLLYFGLRFIAANDKLWFWLEVNSVVDFFTVPPVFVSVYLNRSWLGLRFLRALRLIQFSEILQFLNILKTSNSIKLVNLLSIFISTWLTAAGFIHLVENSGDPWENFQNNQALTYWECVYLLMVTMSTVGYGDVYAKTTLGRLFMVFFILGGLAMFASYVPEIIELIGNRKKYGGSYSAVSGRKHIVVCGHITLESVSNFLKDFLHKDRDDVNVEIVFLHNISPNLELEALFKRHFTQVEFYQGSVLNPHDLARVKIESADACLILANKYCADPDAEDASNIMRVISIKNYHPKIRIITQMLQYHNKAHLLNIPSWNWKEGDDAICLAELKLGFIAQSCLAQGLSTMLANLFSMRSFIKIEEDTWQKYYLEGVSNEMYTEYLSSAFVGLSFPTVCELCFVKLKLLMIAIEYKSANRESRILINPGNHLKIQEGTLGFFIASDAKEVKRAFFYCKACHDDITDPKRIKKCGCKRLEDEQPSTLSPKKKQRNGGMRNSPNTSPKLMRHDPLLIPGNDQIDNMDSNVKKYDSTGMFHWCAPKEIEKVILTRSEAAMTVLSGHVVVCIFGDVSSALIGLRNLVMPLRASNFHYHELKHIVFVGSIEYLKREWETLHNFPKVSILPGTPLSRADLRAVNINLCDMCVILSANQNNIDDTSLQDKECILASLNIKSMQFDDSIGVLQANSQGFTPPGMDRSSPDNSPVHGMLRQPSITTGVNIPIITELVNDTNVQFLDQDDDDDPDTELYLTQPFACGTAFAVSVLDSLMSATYFNDNILTLIRTLVTGGATPELEALIAEENALRGGYSTPQTLANRDRCRVAQLALLDGPFADLGDGGCYGDLFCKALKTYNMLCFGIYRLRDAHLSTPSQCTKRYVITNPPYEFELVPTDLIFCLMQFDSNSLEVLFQ
5PRE , Knot 74 156 0.79 38 120 151
MHHHHHHSSGVDLGTENLYFQSMEQVAMELRLTELTRLLRSVLDQLQDKDPARIFAQPVSLKEVPDYLDHIKHPMDFATMRKRLEAQGYKNLHEFEEDFDLIIDNCMKYNARDTVFYRAAVRLRDQGGVVLRQARREVDSIGLEEASGMHLPERPA

Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\). Let \(p_w(n)\) be the cardinality of \(P_w(n)\). Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).

\(|P_{f(5JAR_1)}(2) \setminus P_{f(8VAZ_1)}(2)|=33\), \(|P_{f(8VAZ_1)}(2) \setminus P_{f(5JAR_1)}(2)|=139\). Let \( Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)| \) be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111011000110101100110001110000010110100100000010011110000111100111001111011011110100110100110110001111100111110010011110110011111110000001010001000011011000110100100000001000010001000001101110100101100110101010010001000011111001111011001000001001111011111110010001101111100001001101101000001000001101010100011010110101110110101010001110100010111100011100010010011010000111100100000000000
Pair \(Z_2\) Length of longest common subsequence
5JAR_1,8VAZ_1 172 4
5JAR_1,5PRE_1 196 6
8VAZ_1,5PRE_1 248 4

Newick tree

 
[
	5PRE_1:11.11,
	[
		5JAR_1:86,8VAZ_1:86
	]:33.11
]

Let d be the Otu--Sayood distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1453 }{\log_{20} 1453}-\frac{388}{\log_{20}388})=273.\)
Status Protein1 Protein2 d d1/2
Query variables 5JAR_1 8VAZ_1 351 237.5
Was not able to put for d
Was not able to put for d1

In notation analogous to [Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[ \delta= \alpha \mathrm{min} + (1-\alpha) \mathrm{max}= \begin{cases} d &\alpha=0,\\ d_1/2 &\alpha=1/2 \end{cases} \]