Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5IWT_1)}(2) \setminus P_{f(2BLI_1)}(2)|=211\),
\(|P_{f(2BLI_1)}(2) \setminus P_{f(5IWT_1)}(2)|=31\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111011000111101100100110000011000000011000011001111110000101100110101001000111100110111100000110111011101110110001001001101111000101101111011010101010110001001100100110111011000110111001101010001100110111101000110010011100011001001011100011011011110101111001100000101001110001001001000100001101110000001001100011001101010001010101111101101101010010011010100000100001100011001010100010111011011111111110110110111001110011111101111001111110111010000101111011111110011011011011111011100111101101010111111111011011100001001101000111110010111011011100010111100100111111101111011111110001011000001101011100111000110011100110100011100111010000010000100010110000010000100001001110
Pair
\(Z_2\)
Length of longest common subsequence
5IWT_1,2BLI_1
242
4
5IWT_1,1CYE_1
226
3
2BLI_1,1CYE_1
132
4
Newick tree
[
5IWT_1:12.69,
[
1CYE_1:66,2BLI_1:66
]:63.69
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{825
}{\log_{20}
825}-\frac{153}{\log_{20}153})=188.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5IWT_1
2BLI_1
240
146
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]