Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5IKL_1)}(2) \setminus P_{f(5APP_1)}(2)|=186\),
\(|P_{f(5APP_1)}(2) \setminus P_{f(5IKL_1)}(2)|=14\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111000101010011000011111111100100011001101010100010111000111110111111010011100100000100111111111101111001101000110110101011000101001110001111010001110100110111011011100101011111010110100011110011100011110101011111111101101011000011110101011101001100010110110011111110101110110010011011001111111010010010011101101001101000101001010101010101111001110101110110110100000011111000011111000000111001001101110101101011111001110011010110101111110000111111011011011000001001001010110110010100100000110101011001110100000111011010101010110100111101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{670
}{\log_{20}
670}-\frac{133}{\log_{20}133})=154.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5IKL_1
5APP_1
202
118.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]