Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5IGW_1)}(2) \setminus P_{f(7JIJ_1)}(2)|=85\),
\(|P_{f(7JIJ_1)}(2) \setminus P_{f(5IGW_1)}(2)|=79\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10001001101100001110000101000110101111000011011101100001110001000110110001101011011100001110001011111010001100110101001101100011011101001100011110111001001010100010110101111001100101110000111000111010101100110001010111010010100100011100011100110111110001110011010001101011011011011110110000011001101010
Pair
\(Z_2\)
Length of longest common subsequence
5IGW_1,7JIJ_1
164
5
5IGW_1,8IMA_1
174
4
7JIJ_1,8IMA_1
178
4
Newick tree
[
8IMA_1:89.91,
[
5IGW_1:82,7JIJ_1:82
]:7.91
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{675
}{\log_{20}
675}-\frac{302}{\log_{20}302})=103.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5IGW_1
7JIJ_1
124
115
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]