Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5IFP_1)}(2) \setminus P_{f(2DCA_1)}(2)|=153\),
\(|P_{f(2DCA_1)}(2) \setminus P_{f(5IFP_1)}(2)|=31\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10100101111111011110100010110100000110001100010100001110100111101010110111001010110010111100101010111101011000101110101110110011101110111010100011111111001010100000101010000100111011000100111111001000000100110110110100100010011111111000101010011101011101010000111100101011101011001001010001001011101011000111111111000110001001100001010111101011111001101101010000001011000001000000010111011010110101011010001010000101011110001011110000000000000010110011010110111010101000010100001010011000101101001101011110111100001110000010110100011000000001111101000001101101011110000100011101100100111001001100111011011001010101101010101000101111100100111010000001000111010100011010110100101001001101000000011111010000001001001001000001100101100101010100001110001101110011101001101011010000010001101011000110111001110001011001100101110111110100110101010111000000101110011101000110010110001000011011001111100101010110110111110110000101001010101000100100111000111101110001001111011110011101001010000111011101001001000000110000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1269
}{\log_{20}
1269}-\frac{256}{\log_{20}256})=267.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5IFP_1
2DCA_1
336
210
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]