Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5IDR_1)}(2) \setminus P_{f(7CCD_1)}(2)|=104\),
\(|P_{f(7CCD_1)}(2) \setminus P_{f(5IDR_1)}(2)|=52\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00111011000010111000110010110011111000010000101001110000110001101011100101111010000010000101110010000101111101111010001010011101100010111110001100001100101001100000001010000100100010100011101011011100111111000010111000110100
Pair
\(Z_2\)
Length of longest common subsequence
5IDR_1,7CCD_1
156
4
5IDR_1,7UCU_1
157
5
7CCD_1,7UCU_1
179
4
Newick tree
[
7UCU_1:86.14,
[
5IDR_1:78,7CCD_1:78
]:8.14
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{393
}{\log_{20}
393}-\frac{169}{\log_{20}169})=66.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
5IDR_1
7CCD_1
86
74
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]