Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5IAB_1)}(2) \setminus P_{f(2PJU_1)}(2)|=97\),
\(|P_{f(2PJU_1)}(2) \setminus P_{f(5IAB_1)}(2)|=75\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000001000010010101101000100110100000100101110111000010000110000100101101000100100010000010000110110010000000000110111001001111100111010010011010000010101011110100100100110000110001100011101011010001110001000001011100101110001001011011001000110010010101010100011010011000101001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{503
}{\log_{20}
503}-\frac{225}{\log_{20}225})=80.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
5IAB_1
2PJU_1
105
94.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]