Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5HWP_1)}(2) \setminus P_{f(6XLH_1)}(2)|=51\),
\(|P_{f(6XLH_1)}(2) \setminus P_{f(5HWP_1)}(2)|=103\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10100011101111111000101001101011011000111110011100110001111101110110000101001111111000110000111001011101100100000001001101111111011101111101111100011001100110100111111111000101111011101100101001101110001110100010001011011001100011111110100111100110110011100110010001010010011011100100001010011000101100111000110100101011111110001111110011110010101101001011001100110101011110000101000001101110110111101111010010000000101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1124
}{\log_{20}
1124}-\frac{419}{\log_{20}419})=184.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5HWP_1
6XLH_1
228
180.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]