Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5HUN_1)}(2) \setminus P_{f(7XYX_1)}(2)|=133\),
\(|P_{f(7XYX_1)}(2) \setminus P_{f(5HUN_1)}(2)|=68\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010010111001000011001011111000011011001011110011100011100011100101100000010100001100110101100101001010111101010001001111110110001111100111100110011101100000000010100011100111000100010010010111000101011010000001001010010000101000111110101000110101111000101000011100001110010110111100100111100100000011011010011000000010001110000101001010111010100011101110110101000011000001110110001101010011111101001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{650
}{\log_{20}
650}-\frac{250}{\log_{20}250})=112.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5HUN_1
7XYX_1
145
117
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]