Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5HJE_1)}(2) \setminus P_{f(7RFX_1)}(2)|=74\),
\(|P_{f(7RFX_1)}(2) \setminus P_{f(5HJE_1)}(2)|=49\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100000000001111010010010001100101111011111001011111111111011100101010000110000111001010111001111010010100100100110001101000011110100111101100111111101011100001011100000011110101101100010011101011011111000010101000111000111000001101101001000101111110010010001011010001111011010011011110100100100011101000111110101000001100001000100111100000101110100010101100100111100110111100010011100111011011110101010010010101010111011100010010011000111111011111110000011011011001111101011001110111000011110011000110011010101010110110100001100011000001011110000110101001001001100110000101111101001011101101101011011110110010100000000101110111110101100111000000011100111010110110110101011100110011100100110110011
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1207
}{\log_{20}
1207}-\frac{510}{\log_{20}510})=179.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5HJE_1
7RFX_1
223
191.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]