Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5HAS_1)}(2) \setminus P_{f(8ITX_1)}(2)|=136\),
\(|P_{f(8ITX_1)}(2) \setminus P_{f(5HAS_1)}(2)|=39\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000000010010111001011110110000110110011111000000110101111110110001011100011001101100001011000100010000111001100100010100011010101100111111000111011111011001001111000010001101010011101100100010100101011010100001110000000001101010010100100101000100111101010010000010000110110110010110010001000010001000010010100010100101110010010001111001001010110001101011001100010110011001000000010011011000101010001100100110100011111100100010001011100101111100011100010111110010001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{650
}{\log_{20}
650}-\frac{182}{\log_{20}182})=133.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5HAS_1
8ITX_1
168
116
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]