Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5GMM_1)}(2) \setminus P_{f(1XCD_1)}(2)|=77\),
\(|P_{f(1XCD_1)}(2) \setminus P_{f(5GMM_1)}(2)|=84\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110101100000110010010111010000110100000000001011010001101001101100101010000000110111100000110101011000001000010110001010110100100001101100101111111110110101010011011011000100111001010011100101100110100111000101110000101000011010011001010011110000010011010010101
Pair
\(Z_2\)
Length of longest common subsequence
5GMM_1,1XCD_1
161
3
5GMM_1,7UBJ_1
158
3
1XCD_1,7UBJ_1
171
4
Newick tree
[
1XCD_1:84.34,
[
5GMM_1:79,7UBJ_1:79
]:5.34
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{590
}{\log_{20}
590}-\frac{261}{\log_{20}261})=92.8\)
Status
Protein1
Protein2
d
d1/2
Query variables
5GMM_1
1XCD_1
118
107
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]