Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5FVJ_1)}(2) \setminus P_{f(1IJQ_1)}(2)|=55\),
\(|P_{f(1IJQ_1)}(2) \setminus P_{f(5FVJ_1)}(2)|=123\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111011010110110110011011010111001100011000111110011100000001111001101010000101010001101111111101110101010111101100111000011001110111101100010011100110000000001110110
Pair
\(Z_2\)
Length of longest common subsequence
5FVJ_1,1IJQ_1
178
4
5FVJ_1,1NVP_1
128
2
1IJQ_1,1NVP_1
202
3
Newick tree
[
1IJQ_1:10.51,
[
5FVJ_1:64,1NVP_1:64
]:39.51
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{482
}{\log_{20}
482}-\frac{166}{\log_{20}166})=92.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
5FVJ_1
1IJQ_1
116
88.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]