Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5FPS_1)}(2) \setminus P_{f(9IQE_1)}(2)|=94\),
\(|P_{f(9IQE_1)}(2) \setminus P_{f(5FPS_1)}(2)|=56\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000000000111101001101111101110101010100000011110110010100000101010110010001110010110101001110001111011100100010001111011111001010001000101100010111100010001011010110010100111110101011111011100011101101111001000100111000001111100101101011010100001111011010011110101110111110100101101010011001001111000001011101100111001110000000000011111011001001110111110101110101101010011100010111010111101101100111000000000111010111101110001101011101101111100111010010100110000010001010101010100001100110000001001010011001101100101110001100000110110010110001010101001111100001011001101100101011000001100110111001010101011110100110011010101011011100111100010100110001110101010110
Pair
\(Z_2\)
Length of longest common subsequence
5FPS_1,9IQE_1
150
7
5FPS_1,5SWU_1
174
4
9IQE_1,5SWU_1
160
4
Newick tree
[
5SWU_1:86.24,
[
5FPS_1:75,9IQE_1:75
]:11.24
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1256
}{\log_{20}
1256}-\frac{590}{\log_{20}590})=170.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5FPS_1
9IQE_1
214
200
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]