Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5FJX_1)}(2) \setminus P_{f(6CLM_1)}(2)|=156\),
\(|P_{f(6CLM_1)}(2) \setminus P_{f(5FJX_1)}(2)|=3\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111100001100011110100110101000101000010111010100001000010110010100001010001010000110001101000001111000011110100111100001111010011010000011011100001100011011101111100110100000000010110100011001010011100111111010110001101101010000000110010111100111100000011001100100000110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{277
}{\log_{20}
277}-\frac{7}{\log_{20}7})=93.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
5FJX_1
6CLM_1
113
58
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]