Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5EVK_1)}(2) \setminus P_{f(3LVU_1)}(2)|=69\),
\(|P_{f(3LVU_1)}(2) \setminus P_{f(5EVK_1)}(2)|=68\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1110111101010010101101111101100010110001011110010111110111101100110010101101001011110010100111110100001101110100111110110001011011001110100111010110111111010111100110011010000010110110100101110010101001011000000110101110011101011100100111101110110001010110001010110001110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{529
}{\log_{20}
529}-\frac{258}{\log_{20}258})=77.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
5EVK_1
3LVU_1
95
92.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]