5EJC_1|Chains A, B|TBC1 domain family member 7|Homo sapiens (9606)
>5ZJC_1|Chain A|Metallo-beta-lactamase type 2|Klebsiella pneumoniae (573)
>2DBW_1|Chains A, C|Gamma-glutamyltranspeptidase|Escherichia coli K12 (83333)
Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5EJC_1)}(2) \setminus P_{f(5ZJC_1)}(2)|=87\),
\(|P_{f(5ZJC_1)}(2) \setminus P_{f(5EJC_1)}(2)|=76\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110110000010111000010000100100011110100111101111111100000101110000001011011011011001010101010100100101100101110100011111101100110001000110001100100000001101101100010100101100101001110110011100011101100010011001101000111111101110101011110010010011001100000111001101100001011000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{518
}{\log_{20}
518}-\frac{242}{\log_{20}242})=79.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
5EJC_1
5ZJC_1
97
92
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]