Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5ECQ_1)}(2) \setminus P_{f(2KYE_1)}(2)|=271\),
\(|P_{f(2KYE_1)}(2) \setminus P_{f(5ECQ_1)}(2)|=6\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11001001010011001001000100100001001110000110100011010100100110011111001010101001101000111010111110100100010101111000110001011001111000011100010110111000001001111110100010001010111001001000100111010100110001101111000100111111011101100100110011001001110001011010011001101010110010000101001011111111010010111010101011010001101111000010001111101010101001011111011010111100010100011110010110000111000111000011011011110000101011000011101010000000101010011001000010110100010100011001111010100000110000001001110110100000001111010111010100100011111001101011001010010110110001100010011
Pair
\(Z_2\)
Length of longest common subsequence
5ECQ_1,2KYE_1
277
2
5ECQ_1,3AVX_1
108
5
2KYE_1,3AVX_1
337
3
Newick tree
[
2KYE_1:17.34,
[
5ECQ_1:54,3AVX_1:54
]:12.34
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{590
}{\log_{20}
590}-\frac{15}{\log_{20}15})=177.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5ECQ_1
2KYE_1
230
118
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]