Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5EBW_1)}(2) \setminus P_{f(6ESY_1)}(2)|=34\),
\(|P_{f(6ESY_1)}(2) \setminus P_{f(5EBW_1)}(2)|=150\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:01010011101101110101000101001000110110001101101110111001010000010001010100000011101001000001100010001010111111100101001000110101111101100001101101101011011010100101001100111110001001000101100011000100011011000010001110
Pair
\(Z_2\)
Length of longest common subsequence
5EBW_1,6ESY_1
184
3
5EBW_1,3TJH_1
174
3
6ESY_1,3TJH_1
194
4
Newick tree
[
6ESY_1:96.91,
[
5EBW_1:87,3TJH_1:87
]:9.91
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{747
}{\log_{20}
747}-\frac{218}{\log_{20}218})=147.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5EBW_1
6ESY_1
190
131.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]