Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5DDS_1)}(2) \setminus P_{f(8AHO_1)}(2)|=82\),
\(|P_{f(8AHO_1)}(2) \setminus P_{f(5DDS_1)}(2)|=63\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001010110101110111001111100101010010010001001111001011101111000101110101110110110101000101001001100110000100000011110011010010100101000001011110101010010011001010100101111111110101111010000000010011110101010101110101000011001101100110111100101110110000001101010000101100011111111101101101100101011001001000110111100100111001111101111101000011011111110001111000011111011000011001101011101101101011010001000100101110010100001101111011111101000001000110001101111011111110000101111110011101010101000010000011001101100001001110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{878
}{\log_{20}
878}-\frac{355}{\log_{20}355})=140.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5DDS_1
8AHO_1
173
147
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]