Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5DDB_1)}(2) \setminus P_{f(1UYP_1)}(2)|=99\),
\(|P_{f(1UYP_1)}(2) \setminus P_{f(5DDB_1)}(2)|=67\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110001110110001111001001101111011000101111011111100111100111001111010111110101010101110101010011100001100100111001000010001010011011010010001111111110011110010111000011111110100010101010100000100101111000110101001000001011111011010101000010110100011111001101000111110110100101011010110100011101000000001010101110000000100110111001011000000000001000110110011101100110110110010110010011011010011001001010111011110111001101010100010110111111011101111010000101100111100100011010101000101000010
Pair
\(Z_2\)
Length of longest common subsequence
5DDB_1,1UYP_1
166
5
5DDB_1,3PWC_1
197
4
1UYP_1,3PWC_1
181
3
Newick tree
[
3PWC_1:98.14,
[
5DDB_1:83,1UYP_1:83
]:15.14
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{921
}{\log_{20}
921}-\frac{432}{\log_{20}432})=129.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5DDB_1
1UYP_1
166
153.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]