CoV2D BrowserTM

CoV2D project home | Random page
Parikh vectors
5CRU_1 2OAG_1 1GOG_1 Letter Amino acid
15 30 27 R Arginine
21 30 22 Q Glutamine
18 26 40 P Proline
6 12 6 C Cysteine
16 64 71 S Serine
10 45 61 T Threonine
28 44 41 V Valine
29 37 22 K Lycine
13 14 13 M Methionine
3 20 16 W Tryptophan
37 35 44 A Alanine
19 43 36 D Aspartic acid
24 40 12 E Glutamic acid
9 19 10 H Histidine
12 47 33 I Isoleucine
15 56 24 Y Tyrosine
13 39 40 N Asparagine
20 40 69 G Glycine
38 54 28 L Leucine
15 31 24 F Phenylalanine

5CRU_1|Chains A, B, C, D|Tyrosine-protein phosphatase non-receptor type 23|Homo sapiens (9606)
>2OAG_1|Chains A, B, C, D|Dipeptidyl peptidase 4|Homo sapiens (9606)
>1GOG_1|Chain A|GALACTOSE OXIDASE|Hypomyces rosellus (5132)
Protein code \(c\) LZ-complexity \(\mathrm{LZ}(w)\) Length \(n=|w|\) \(\frac{\mathrm{LZ}(w)}{n /\log_{20} n}\) \(p_w(1)\) \(p_w(2)\) \(p_w(3)\) Sequence \(w=f(c)\)
5CRU , Knot 153 361 0.83 40 201 340
MEAVPRMPMIWLDLKEAGDFHFQPAVKKFVLKNYGENPEAYNEELKKLELLRQNAVRVPRDFEGCSVLRKYLGQLHYLQSRVPMGSGQEAAVPVTWTEIFSGKSVAHEDIKYEQACILYNLGALHSMLGAMDKRVSEEGMKVSCTHFQCAAGAFAYLREHFPQAYSVDMSRQILTLNVNLMLGQAQECLLEKSMLDNRKSFLVARISAQVVDYYKEACRALENPDTASLLGRIQKDWKKLVQMKIYYFAAVAHLHMGKQAEEQQKFGERVAYFQSALDKLNEAIKLAKGQPDTVQDALRFTMDVIGGKYNSAKKDNDFIYHEAVPALDTLQPVKGAPLVKPLPVNPTDPAVTGPDIFAKLV
2OAG , Knot 279 726 0.84 40 306 684
SRKTYTLTDYLKNTYRLKLYSLRWISDHEYLYKQENNILVFNAEYGNSSVFLENSTFDEFGHSINDYSISPDGQFILLEYNYVKQWRHSYTASYDIYDLNKRQLITEERIPNNTQWVTWSPVGHKLAYVWNNDIYVKIEPNLPSYRITWTGKEDIIYNGITDWVYEEEVFSAYSALWWSPNGTFLAYAQFNDTEVPLIEYSFYSDESLQYPKTVRVPYPKAGAVNPTVKFFVVNTDSLSSVTNATSIQITAPASMLIGDHYLCDVTWATQERISLQWLRRIQNYSVMDICDYDESSGRWNCLVARQHIEMSTTGWVGRFRPSEPHFTLDGNSFYKIISNEEGYRHICYFQIDKKDCTFITKGTWEVIGIEALTSDYLYYISNEYKGMPGGRNLYKIQLSDYTKVTCLSCELNPERCQYYSVSFSKEAKYYQLRCSGPGLPLYTLHSSVNDKGLRVLEDNSALDKMLQNVQMPSKKLDFIILNETKFWYQMILPPHFDKSKKYPLLLDVYAGPCSQKADTVFRLNWATYLASTENIIVASFDGRGSGYQGDKIMHAINRRLGTFEVEDQIEAARQFSKMGFVDNKRIAIWGWSYGGYVTSMVLGSGSGVFKCGIAVAPVSRWEYYDSVYTERYMGLPTPEDNLDHYRNSTVMSRAENFKQVEYLLIHGTADDNVHFQQSAQISKALVDVGVDFQAMWYTDEDHGIASSTAHQHIYTHMSHFIKQCFS
1GOG , Knot 248 639 0.83 40 264 582
ASAPIGSAISRNNWAVTCDSAQSGNECNKAIDGNKDTFWHTFYGANGDPKPPHTYTIDMKTTQNVNGLSMLPRQDGNQNGWIGRHEVYLSSDGTNWGSPVASGSWFADSTTKYSNFETRPARYVRLVAITEANGQPWTSIAEINVFQASSYTAPQPGLGRWGPTIDLPIVPAAAAIEPTSGRVLMWSSYRNDAFGGSPGGITLTSSWDPSTGIVSDRTVTVTKHDMFCPGISMDGNGQIVVTGGNDAKKTSLYDSSSDSWIPGPDMQVARGYQSSATMSDGRVFTIGGSWSGGVFEKNGEVYSPSSKTWTSLPNAKVNPMLTADKQGLYRSDNHAWLFGWKKGSVFQAGPSTAMNWYYTSGSGDVKSAGKRQSNRGVAPDAMCGNAVMYDAVKGKILTFGGSPDYQDSDATTNAHIITLGEPGTSPNTVFASNGLYFARTFHTSVVLPDGSTFITGGQRRGIPFEDSTPVFTPEIYVPEQDTFYKQNPNSIVRVYHSISLLLPDGRVFNGGGGLCGDCTTNHFDAQIFTPNYLYNSNGNLATRPKITRTSTQSVKVGGRITISTDSSISKASLIRYGTATHTVNTDQRRIPLTLTNNGGNSYSFQVPSDSGVALPGYWMLFVMNSAGVPSVASTIRVTQ

Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\). Let \(p_w(n)\) be the cardinality of \(P_w(n)\). Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).

\(|P_{f(5CRU_1)}(2) \setminus P_{f(2OAG_1)}(2)|=35\), \(|P_{f(2OAG_1)}(2) \setminus P_{f(5CRU_1)}(2)|=140\). Let \( Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)| \) be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1011101111110100110101011100111000100101000010010110001101100101001100011010010001111010011111010011010011000100001011001111001111100010001101000010011111101000110100101000110101011110100011000110000011110101011000001001100100101110100010011010100111110101100100000110011010011001001101101010010011010101111000010000011000111110010110111110111101001110110111011
Pair \(Z_2\) Length of longest common subsequence
5CRU_1,2OAG_1 175 5
5CRU_1,1GOG_1 181 3
2OAG_1,1GOG_1 152 4

Newick tree

 
[
	5CRU_1:92.94,
	[
		2OAG_1:76,1GOG_1:76
	]:16.94
]

Let d be the Otu--Sayood distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1087 }{\log_{20} 1087}-\frac{361}{\log_{20}361})=191.\)
Status Protein1 Protein2 d d1/2
Query variables 5CRU_1 2OAG_1 248 182
Was not able to put for d
Was not able to put for d1

In notation analogous to [Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[ \delta= \alpha \mathrm{min} + (1-\alpha) \mathrm{max}= \begin{cases} d &\alpha=0,\\ d_1/2 &\alpha=1/2 \end{cases} \]