Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5CRU_1)}(2) \setminus P_{f(2OAG_1)}(2)|=35\),
\(|P_{f(2OAG_1)}(2) \setminus P_{f(5CRU_1)}(2)|=140\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1011101111110100110101011100111000100101000010010110001101100101001100011010010001111010011111010011010011000100001011001111001111100010001101000010011111101000110100101000110101011110100011000110000011110101011000001001100100101110100010011010100111110101100100000110011010011001001101101010010011010101111000010000011000111110010110111110111101001110110111011
Pair
\(Z_2\)
Length of longest common subsequence
5CRU_1,2OAG_1
175
5
5CRU_1,1GOG_1
181
3
2OAG_1,1GOG_1
152
4
Newick tree
[
5CRU_1:92.94,
[
2OAG_1:76,1GOG_1:76
]:16.94
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1087
}{\log_{20}
1087}-\frac{361}{\log_{20}361})=191.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5CRU_1
2OAG_1
248
182
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]