Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5CNK_1)}(2) \setminus P_{f(8IGG_1)}(2)|=53\),
\(|P_{f(8IGG_1)}(2) \setminus P_{f(5CNK_1)}(2)|=62\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1110110010110111100111101100011000101010111111111000101000010100001100101111110010000011111011101100000000110001011010100100100101010011000111111111110000101011011011011010010001010000000011001110100101110110110100100110010010011011000101001011010011000100000011001100101011111100000001111100101010111001111000110100011011101011001100100010010100000011100110001000100000000100001110000000000111110110111011001000101000010011011010010000110101011101000100110100110111000110100111000010110110010101001010000110001000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1157
}{\log_{20}
1157}-\frac{517}{\log_{20}517})=165.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5CNK_1
8IGG_1
205
188
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]