Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5CJM_1)}(2) \setminus P_{f(6ZTQ_1)}(2)|=204\),
\(|P_{f(6ZTQ_1)}(2) \setminus P_{f(5CJM_1)}(2)|=21\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100010110101101100110001111001010011111001110101000111010001010100100001101101010001100110111010010100011010100011101111110101110110101101001101001110001100110000101001110100110001110010110101101001011111100001110110111001110010011110011010111010001100001110011100110011010001111011001110001111001011111000101110110000000111110101110011110011011000111000100110111011101111101101001011110000101011010101110111000110010011111000101111000000010101010111001111001110001001000101111100101000111110000010111111101010110111010011101100011010111001111010110101100001011110011110001010011011110011111001000100000011101101100111100110100111100010101000111011001110010101010011111000011011001111010001111110011101100101000111000000101011001110001100110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{856
}{\log_{20}
856}-\frac{115}{\log_{20}115})=208.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5CJM_1
6ZTQ_1
260
149.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]