Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5CIX_1)}(2) \setminus P_{f(3ZZJ_1)}(2)|=44\),
\(|P_{f(3ZZJ_1)}(2) \setminus P_{f(5CIX_1)}(2)|=106\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:010101011010001111001001110000100111111010111001110110001001011101001011101110000110011101100011001000101100100001011110100011111111001100110000011111111110001011010010001000100001100101010001011000101101001110010111000100101001000110001011100001
Pair
\(Z_2\)
Length of longest common subsequence
5CIX_1,3ZZJ_1
150
3
5CIX_1,8ELD_1
162
3
3ZZJ_1,8ELD_1
154
3
Newick tree
[
8ELD_1:80.32,
[
5CIX_1:75,3ZZJ_1:75
]:5.32
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{642
}{\log_{20}
642}-\frac{246}{\log_{20}246})=111.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5CIX_1
3ZZJ_1
143
114
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]