Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5CIU_1)}(2) \setminus P_{f(6TQJ_1)}(2)|=89\),
\(|P_{f(6TQJ_1)}(2) \setminus P_{f(5CIU_1)}(2)|=37\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:010010100000001001111011110101101111111010100000110110110111010100101001111111000101101001100001100110010101100110011001000101110110111010110110100001
Pair
\(Z_2\)
Length of longest common subsequence
5CIU_1,6TQJ_1
126
3
5CIU_1,4PGR_1
170
3
6TQJ_1,4PGR_1
126
3
Newick tree
[
4PGR_1:78.35,
[
5CIU_1:63,6TQJ_1:63
]:15.35
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{231
}{\log_{20}
231}-\frac{81}{\log_{20}81})=48.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
5CIU_1
6TQJ_1
61
45.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]