Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5CDY_1)}(2) \setminus P_{f(1DKF_1)}(2)|=81\),
\(|P_{f(1DKF_1)}(2) \setminus P_{f(5CDY_1)}(2)|=89\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010101111011001110111011100110111010000110110101100101111011010010011101010110101110011100001110100001001100010011010011101110001101101101110110110100111011111100011001100110101111111000100010000011111011100110100110111111000100101001010111011
Pair
\(Z_2\)
Length of longest common subsequence
5CDY_1,1DKF_1
170
4
5CDY_1,6ABA_1
148
3
1DKF_1,6ABA_1
166
3
Newick tree
[
1DKF_1:87.08,
[
5CDY_1:74,6ABA_1:74
]:13.08
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{477
}{\log_{20}
477}-\frac{233}{\log_{20}233})=70.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
5CDY_1
1DKF_1
88
87
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]