Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5BZQ_1)}(2) \setminus P_{f(2REO_1)}(2)|=66\),
\(|P_{f(2REO_1)}(2) \setminus P_{f(5BZQ_1)}(2)|=136\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001010100001111010001000100001101001100011010010111001100000111010111101010110110001101110000000000010101110000001001100101110101100010000001000000001
Pair
\(Z_2\)
Length of longest common subsequence
5BZQ_1,2REO_1
202
4
5BZQ_1,2UYA_1
188
3
2REO_1,2UYA_1
168
4
Newick tree
[
5BZQ_1:10.68,
[
2UYA_1:84,2REO_1:84
]:17.68
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{456
}{\log_{20}
456}-\frac{151}{\log_{20}151})=90.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
5BZQ_1
2REO_1
116
86
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]