Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5BWF_1)}(2) \setminus P_{f(2EEA_1)}(2)|=174\),
\(|P_{f(2EEA_1)}(2) \setminus P_{f(5BWF_1)}(2)|=21\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000000011110100111001011110110010111000101101100101111011010011010000000100111100111000010101001110110001100111000101100110111011101101011001000011110000111010001011101110100110100110011110101011110000001111100111101011010000100100101111101010011000011000110001011011010110110011010001100110101000111110001011000000010000011010001101011100001001110000011010111100111110000001010100010010100011000110001010000001011101101011010101110110010110101001110010000100011000100101110011100
Pair
\(Z_2\)
Length of longest common subsequence
5BWF_1,2EEA_1
195
3
5BWF_1,2CWG_1
223
4
2EEA_1,2CWG_1
132
3
Newick tree
[
5BWF_1:11.77,
[
2EEA_1:66,2CWG_1:66
]:48.77
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{600
}{\log_{20}
600}-\frac{115}{\log_{20}115})=141.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5BWF_1
2EEA_1
178
108.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]