Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5BVZ_1)}(2) \setminus P_{f(4RLB_1)}(2)|=65\),
\(|P_{f(4RLB_1)}(2) \setminus P_{f(5BVZ_1)}(2)|=81\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000100111101001000111001100001101110100110110010011011001010000001011000101110001101101010010101111000100110011010101101000101100010010000100010000011011010000010110111100011011010111101010000011000000011111011001000111100110101110
Pair
\(Z_2\)
Length of longest common subsequence
5BVZ_1,4RLB_1
146
4
5BVZ_1,4DGM_1
172
3
4RLB_1,4DGM_1
170
4
Newick tree
[
4DGM_1:89.28,
[
5BVZ_1:73,4RLB_1:73
]:16.28
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{486
}{\log_{20}
486}-\frac{233}{\log_{20}233})=72.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
5BVZ_1
4RLB_1
91
86
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]