Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5BRD_1)}(2) \setminus P_{f(1FMO_1)}(2)|=91\),
\(|P_{f(1FMO_1)}(2) \setminus P_{f(5BRD_1)}(2)|=83\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110100000001111010010100100010011101110111011100101111001000010101000010000100110110011011110110010111101111101111111100101110100010111111001110010111111111001011000111110100100000011101110100111111011100110001100001111101100011100010010010101011100001101111010000110100110011011011001010100110000001101100101111110111110011001110001001001000110001001110001001000011010111000011010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{731
}{\log_{20}
731}-\frac{350}{\log_{20}350})=104.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5BRD_1
1FMO_1
131
126.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]