Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5AXL_1)}(2) \setminus P_{f(3ZXG_1)}(2)|=57\),
\(|P_{f(3ZXG_1)}(2) \setminus P_{f(5AXL_1)}(2)|=93\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000101010011111101010010001011110010000110111001011100011011110010001011100111010100100111011101101010100111100011110000110010000101100111011001100011100011001000000010011100110110110100011110001001011011010000010001000101101000011111001100010000000
Pair
\(Z_2\)
Length of longest common subsequence
5AXL_1,3ZXG_1
150
6
5AXL_1,7WXP_1
163
6
3ZXG_1,7WXP_1
179
7
Newick tree
[
7WXP_1:88.84,
[
5AXL_1:75,3ZXG_1:75
]:13.84
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{560
}{\log_{20}
560}-\frac{251}{\log_{20}251})=87.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
5AXL_1
3ZXG_1
109
98
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]