Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5AWS_1)}(2) \setminus P_{f(8IHN_1)}(2)|=176\),
\(|P_{f(8IHN_1)}(2) \setminus P_{f(5AWS_1)}(2)|=7\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111101011100011111110001010101101000110101011101111100011001011110101101001001110101100000000100001110110110010010000101000010110001010110001101110100010000101000000011001111001011111011100101111111101000011101101000000111101110101001100101111010001001010010111110010110001111001100
Pair
\(Z_2\)
Length of longest common subsequence
5AWS_1,8IHN_1
183
2
5AWS_1,1RBJ_1
186
3
8IHN_1,1RBJ_1
19
1
Newick tree
[
5AWS_1:10.38,
[
8IHN_1:9.5,1RBJ_1:9.5
]:96.88
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{306
}{\log_{20}
306}-\frac{24}{\log_{20}24})=93.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
5AWS_1
8IHN_1
122
65.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]