Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5ANC_1)}(2) \setminus P_{f(2NOI_1)}(2)|=207\),
\(|P_{f(2NOI_1)}(2) \setminus P_{f(5ANC_1)}(2)|=4\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000101100101110100011000101001100000001010111100111001100100110010000110110110011101111110100101100000111001000100010001000000011000100000001000101010110000011011100010010100001011010101101100101111010001010111100011011110010110111001110011000001100110111101001000110110110000100000100110101001001001000101000010111111001110001111010111100011010001000010111001010110000011011000100000011100000001
Pair
\(Z_2\)
Length of longest common subsequence
5ANC_1,2NOI_1
211
2
5ANC_1,7YDP_1
150
5
2NOI_1,7YDP_1
173
2
Newick tree
[
2NOI_1:10.63,
[
5ANC_1:75,7YDP_1:75
]:27.63
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{413
}{\log_{20}
413}-\frac{15}{\log_{20}15})=128.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5ANC_1
2NOI_1
167
86
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]