Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5ALJ_1)}(2) \setminus P_{f(3CUX_1)}(2)|=75\),
\(|P_{f(3CUX_1)}(2) \setminus P_{f(5ALJ_1)}(2)|=74\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110101111010111111111111100001111101110011001110110001101010100111110000000000101011001010011001101001001110111110001100111000110001000111011001010101110000111101010100111001010100111100111010110011110111000001100100101101100111110000100100101010101010110110111101001110010010001111101100111101010100011101000010110001101100111001111100111111101111010010111010011111010101100101011100010100111101010001000100110100001101001001111110010010100110000101010010001101110100010001011000110011111111010001111101000100111010010100010100100100100111011000100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1077
}{\log_{20}
1077}-\frac{528}{\log_{20}528})=142.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5ALJ_1
3CUX_1
180
177
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]