Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4ZLT_1)}(2) \setminus P_{f(8GXM_1)}(2)|=160\),
\(|P_{f(8GXM_1)}(2) \setminus P_{f(4ZLT_1)}(2)|=36\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111101110010010010001100011100000101011101110011000000100111011011000011111000100110110111110100110111000010111100000110110100100101001111011100001111011110101010011101001011110011010000001101001001000110000011001000100010010011011010001110111100001001001101110101100100001000000010110000001000100011001010111101110011000100001111100100011100110000110100010010101010100001100011111010010000100001001111000000011000000000
Pair
\(Z_2\)
Length of longest common subsequence
4ZLT_1,8GXM_1
196
4
4ZLT_1,5TNY_1
174
6
8GXM_1,5TNY_1
176
3
Newick tree
[
8GXM_1:95.09,
[
4ZLT_1:87,5TNY_1:87
]:8.09
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{574
}{\log_{20}
574}-\frac{154}{\log_{20}154})=121.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4ZLT_1
8GXM_1
154
103.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]