Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4YDU_1)}(2) \setminus P_{f(8HNU_1)}(2)|=24\),
\(|P_{f(8HNU_1)}(2) \setminus P_{f(4YDU_1)}(2)|=136\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1011110000000111100000111100100010101001111101100001000111101110001101001011100111111111111101100111110111111001010111111000110111111110110001101011100011100100111011000101111001111110011101011011110110001110101011001110010001000000101101100111001110000110001100111111101000101011011000010110101010000111110111101011101011101010111101111000000
Pair
\(Z_2\)
Length of longest common subsequence
4YDU_1,8HNU_1
160
6
4YDU_1,1IAW_1
194
2
8HNU_1,1IAW_1
306
3
Newick tree
[
1IAW_1:14.51,
[
4YDU_1:80,8HNU_1:80
]:60.51
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1336
}{\log_{20}
1336}-\frac{343}{\log_{20}343})=258.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4YDU_1
8HNU_1
331
219
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]