Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4XUR_1)}(2) \setminus P_{f(7HJN_1)}(2)|=96\),
\(|P_{f(7HJN_1)}(2) \setminus P_{f(4XUR_1)}(2)|=50\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100110110110111010100101101010100010110111000000100000000001111011101001001010111100011100110101000100001010011110001001010010101111100011011010100110000010000011101001010100111100
Pair
\(Z_2\)
Length of longest common subsequence
4XUR_1,7HJN_1
146
3
4XUR_1,5PGW_1
171
4
7HJN_1,5PGW_1
171
4
Newick tree
[
5PGW_1:89.27,
[
4XUR_1:73,7HJN_1:73
]:16.27
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{307
}{\log_{20}
307}-\frac{126}{\log_{20}126})=56.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
4XUR_1
7HJN_1
74
60
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]